
QFlow: Solution for 
Managing ML Projects

Alexander Knop

Principal Mathematician, Quantori

8 January 2024 White Paper



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

TABLE OF CONTENTS

Executive Summary 4

Cautionary Tales 5

2

Cautionary Tales: The Tale of Broken Notebooks 5

Cautionary Tales: The Tale of Growing Pains 6

Cautionary Tales: The Tale of Missing User Interface 6

Alternatives 7

Alternatives: Kedro 7

Alternatives: Flyte 8

Alternatives: SageMaker 8

Life Science 9

Typical Workflow When Using QFlow 10

Technical Details 12



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

EXECUTIVE SUMMARY

3

In recent years, the rapid growth of AI technologies has resulted in an increasing number of 

organizations adopting machine learning techniques to solve complex business problems. However, 

the process of building and deploying ML models at scale can be challenging, involving numerous 

complex steps such as data preparation, feature engineering, model training, and deployment.

Various ML frameworks have emerged to address these challenges. This document will present a 

framework that provides a structured approach to managing ML projects, enabling teams to 

collaborate more efficiently, improve code quality, and automate various tasks. Like popular 

frameworks such as Kedro, Flyte, and SageMaker, this framework provides an opinionated structure 

to develop, maintain, and scale ML projects. The framework emphasizes modularity, reproducibility, 

and versioning, enabling teams to track changes easily and reproduce results.

In the following sections, we will dive into this framework's key features and benefits, along with 

examples and best practices for implementing it in your ML projects.



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

CAUTIONARY TALES

4

As with any other software projects, ML and data science projects require adherence to best 

practices, failure to follow these practices can lead to various issues, including project delays, 

technical debt, and poor model performance.

This section will present archetypical examples of machine learning projects that have gone awry due 

to engineers not following best practices. We will explore the specific challenges these projects faced, 

the root causes of their failures, and how they could have been avoided using proper ML project 

management frameworks.

In this project, a team of data scientists analyzed datasets consisting of gut microbiome data to 

investigate the effects of certain drugs improving gut microbial composition on treating other 

diseases. The team successfully developed and trained machine learning models to predict the 

impact of gut microbial composition on the treatment. They also used various visualization 

techniques to present the findings to their client, who was pleased with the results.

However, problems arose when the client attempted to reproduce the experiments independently. 

Despite the successful delivery of the results, the client was unable to reproduce the findings due to 

several issues with the project's development and management practices. Specifically, the team had 

not fixed the versions of the libraries used in the project, which led to discrepancies between the 

client's environment and the team's.

Furthermore, the team developed the project using Jupyter notebooks, which are difficult to test and 

reproduce; as a result, changes in a shared library made some of the notebooks unrunnable, 

exacerbating the client's difficulties in reproducing the results.

One way to ensure code reproducibility and version control in ML projects is using scripts instead of 

notebooks. Scripting allows for proper testing of the code using standard libraries and frameworks. In 

addition, thorough project documentation, including dependencies and their specific versions, is 

crucial for enabling future reproducibility.

The Tale of Broken Notebooks



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

5

In this project, a client approached us to help scale their analysis of health-related surveys and 

imaging data. Upon reviewing the code, the team discovered it was developed using Jupyter 

notebooks. This approach resulted in code that was repetitive, contained bugs that had been copied 

over and over, and was challenging to parallelize, which meant that the team could not train models 

on larger datasets. Additionally, the team had yet to implement hyperparameter tuning processes 

beyond a simple brute-force search, limiting the models' accuracy and robustness.

Finally, the lack of configuration in the codebase incentivized developers to hardcode the dataset's 

location and heavily rely on its structure. This approach made it challenging to scale the project since 

changes in the dataset's structure would require significant code modifications.

They could have avoided this situation if the team had used a framework that offered cloud-based 

development and deployment capabilities. With such a framework, the team could have used the 

cloud infrastructure's scalability and parallelization capabilities to train models on larger datasets and 

tune hyperparameters more efficiently.

In this project, our team was tasked with developing a solution for automatically labeling microscopic 

images. Initially, the client's requirements stated that they would need to analyze at most a couple of 

thousand images daily, and a console application would suffice. However, after the initial solution 

was delivered, the client requested that we analyze a dataset of hundreds of millions of images and 

create a dashboard or user interface to run the inference since the console was not user-friendly for 

the scientists utilizing the solution. In addition, the client wanted to run the inference in the cloud 

since their on-prem server was unavailable.

The change in requirements presented significant challenges for our team. We had to re -architect the 

solution to make it scalable and deployable in the cloud and create a dashboard or UI that scientists 

could use to run the inference. This was a time-consuming and complex process, and it delayed the 

project significantly.

However, this story would have been much more straightforward if the team had used a framework 

that allowed us to scale and create dashboards automatically. With such a framework, we could have 

easily deployed the solution to the cloud and created a dashboard or UI for scientists without needing 

significant additional development effort. This would have enabled us to deliver the solution to the 

client faster and more efficiently, saving time and reducing costs.

In summary, when developing ML projects, it's essential to consider scalability and deployment 

requirements from the outset, even if the initial requirements seem small. By using a framework that 

allows for easy scaling and dashboard creation, teams can simplify their development process and 

respond more quickly to changing client needs.

The Tale of Growing Pains

The Tale of Missing User Interface



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

ALTERNATIVES

6

As mentioned, when it comes to managing machine learning projects, various tools and frameworks 

are available in the market, each with its own strengths and weaknesses. In this section, we will 

compare QFlow, a new pipeline management solution, with some of the existing tools in the market, 

including Kedro, Flyte, and SageMaker. While all these tools have their own merits, we will argue that 

QFlow is ultimately a better solution, offering a more flexible, scalable, and intuitive approach to 

managing ML pipelines.

Kedro

Compared to Kedro, QFlow offers a different approach to writing ML pipelines. Rather than explicitly 

describing computation graphs, QFlow allows for describing workflows using a Python-based 

domain-specific language (DSL) that is more readable and easier to understand for non-technical 

stakeholders. This makes it easier for the team to collaborate and update the pipeline when 

necessary.

Another critical difference between QFlow and Kedro is the ability to run workflows in the cloud. With 

QFlow, the team can provision cloud infrastructure for running workflows, making scaling and 

running large-scale pipelines easier. This also enables the team to take advantage of the scalability 

and flexibility offered by cloud infrastructure, making it easier to manage complex pipelines that 

require significant computing resources.

In summary, QFlow offers a more flexible and scalable approach to managing ML pipelines, allowing 

for the description of workflows using a Python-based DSL, running workflows in the cloud, and 

provisioning infrastructure as necessary. These features make it easier for teams to manage 

complex ML projects, collaborate more effectively, and scale their pipelines as necessary.



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

7

QFlow and Flyte are pipeline management solutions using a DSL to describe pipelines. However, 

QFlow and Flyte differ in several key areas.

One significant difference between QFlow and Flyte is their approach to the project structure. QFlow 

enforces a structured project layout, making organizing and maintaining a complex ML project easier. 

In contrast, Flyte does not impose any particular project structure, allowing for more flexibility in how 

pipelines are organized.

Another difference is in their support for tracking. QFlow provides extensive tracking functionality, 

allowing users to track experiments, artifacts, and metadata associated with a pipeline run. On the 

other hand, Flyte does not have built-in tracking support, making it more challenging to monitor 

pipeline runs and compare results across different runs.

A significant advantage of Flyte is its support for writing pipeline steps in different programming 

languages, whereas QFlow currently only supports Python. However, to use Flyte, artifacts need to be 

Protobuffer convertible, which can limit the flexibility in how users can represent their data.

While both QFlow and Flyte offer DSL-based pipeline management solutions, their focus and 

strengths differ. QFlow provides a more structured and intuitive approach to managing ML pipelines, 

with built-in tracking and scalability features. At the same time, Flyte offers more flexibility in writing 

pipeline steps in different programming languages. However, this flexibility can present challenges for 

many ML projects, particularly those with limited engineering expertise.

Amazon SageMaker is designed to run pipelines on AWS and provides various built-in components 

for data processing, model training, and deployment. However, SageMaker has some limitations 

regarding portability. The solution requires projects to be locked into the AWS environment and has 

limited support for running code on-premises. Furthermore, the explicit graph description and 

separate scripts for each step can complicate testing and support.

QFlow, on the other hand, provides a more structured and portable approach to pipeline 

management. As mentioned, using a python-based DSL, QFlow, allows for a more readable and 

intuitive way of describing workflows. Additionally, QFlow offers the ability to run workflows in the 

cloud, provision infrastructure, and track experiments out of the box. This makes QFlow a more 

comprehensive and efficient solution for managing ML pipelines, especially for teams that may not 

have extensive engineering expertise or that need to work across multiple environments.

Flyte

SageMaker



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

LIFE SCIENCE

8

QFlow provides numerous benefits for life science projects, particularly for startups looking to scale. 

First, the easy-to-use python-based DSL allows for straightforward pipeline management without the 

need for extensive engineering expertise. This is particularly important for life science projects, where 

scientists and researchers may not have a strong background in software engineering.

Additionally, QFlow enables the deployment of specialized tools often used to process life science 

data. This allows for greater flexibility and customization in the pipeline management process, 

essential for life science projects that often require unique and complex workflows.

Finally, QFlow's scalability features make it an ideal solution for startups in the life science industry. 

As the volume of data grows, QFlow allows for easy scaling to meet the project's demands without 

the need for significant infrastructure changes. This scalability also enables startups to more easily 

handle larger datasets and accelerate the research process, which is crucial in the competitive world 

of life science.



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

TYPICAL WORKFLOW WHEN USING QFlow

9

A typical workflow of using QFlow starts with creating a project and configuring it according to the 

specific needs of the ML pipeline. This can be done using a simple configuration wizard that guides 

the user through the process and helps set up the project's environment, dependencies, and resource 

allocation.

Once the project is set up, the user can prototype different pipeline steps using Jupyter notebooks or 

scripts. As soon as they are ready, these notebooks/scripts can be converted into pipeline steps; the 

pipeline is written using QFlow's DSL-based approach, which allows for intuitive and readable pipeline 

definition. The pipeline definition and the steps are version-controlled using GitHub. They can be 

executed from the command line using QFlow's CLI tools or executed from the PR automatically to 

allow the review of the metrics and visualizations.

Fig. 1. Creating a New Project

Fig. 2. Creating Pipelines from CLI



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

10

With QFlow, it is also possible to deploy specialized tools and libraries needed for the data processing 

phase (e.g., it allows deploying a service for fMRI processing), which is often a critical part of life 

science projects. This is achieved by leveraging containerization and the support of plugins.

2. Factory_load

from_=resources/test_point_cloud

1. Factory_load

from_=resources/ train_labels

3. FitLogisticRegression

max_iter=10

learning_rate=0.1

0. Factory_load

from_=resources/train_point_cloud

train_loss

4. Predict

point_cloud labels

loss
point_cloud

model

Fig 3. Example of a Pipeline Graph

As the project grows in size and complexity, the QFlow project can be configured to run the pipelines 

in the cloud to handle larger datasets and more complex models.

Overall, QFlow's intuitive interface, ability to configure the project to specific needs, and scalability 

make it an excellent choice for life science projects, where data processing and scaling are essential.

Fig 4. Tracked Pipeline



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

11

Fig 6. Pipelines can be Executed from PR

To expand QFlow's functionality, it uses pluggy, a lightweight plugin manager for Python. This feature 

allows developers to create custom plugins and add new functionality to QFlow as needed.

QFlow integrates with popular machine learning tracking solutions such as MLFlow and Weights & 

Biases for tracking purposes. Custom tracking solutions can also be added by creating plugins.

For infrastructure provisioning, QFlow uses Terraform, a widely used infrastructure as a code tool. 

This enables developers to provision new resources and infrastructure quickly and easily in a scalable 

and reproducible way without requiring in-depth knowledge of the cloud.

Finally, QFlow provides automation for GitHub workflows, enabling users to run and test pipelines 

from pull requests. Model registries like SageMaker and MLFlow registry are also integrated into 

QFlow for deploying models.



QFlow: Solution for Managing ML Projects White Paper

One Broadway, 14th Floor, Cambridge, MA 02142

TECHNICAL DETAILS

12

QFlow is a pipeline management solution that builds upon a range of open-source libraries and tools. 

At its core, QFlow leverages Python to define and execute pipelines. Python's metaprogramming 

capabilities are used to convert the pipeline DSL into a computational graph. The user-friendly CLI is 

provided by typer, a library for building command-line interfaces. Hydra, a configuration management 

framework, is used to create hierarchical configurations that can be overridden at runtime.

Fig 5. Diagram of a Running Pipeline



Alexander Knop

Principal Mathematician, Quantori

We develop cutting-edge technology systems, applications, and infrastructures for biotech, 

pharmaceutical, and healthcare companies that accelerate drug discovery and improve patient 

outcomes. Our innovative approach harnesses the power of data engineering and informatics, 

machine learning, emerging technologies, and cloud expertise to advance research and development 

and ultimately bridge the gap between meaningful data and patient success.

8 January 2024


	Slide 1: QFlow: Solution for Managing ML Projects
	Slide 2: TABLE OF CONTENTS
	Slide 3: EXECUTIVE SUMMARY
	Slide 4: CAUTIONARY TALES
	Slide 5: The Tale of Growing Pains
	Slide 6: ALTERNATIVES
	Slide 7: Flyte
	Slide 8: LIFE SCIENCE
	Slide 9: TYPICAL WORKFLOW WHEN USING QFlow
	Slide 10
	Slide 11
	Slide 12: TECHNICAL DETAILS
	Slide 13

