

The Science of Acceleration: What Makes Change Happen Faster?

Our Core Values

Our core values are the principles we embody daily, shaping our work, collaborations, and contributions. They form the essence of Quantori's culture and serve as the compass that guides us on our journey, making a positive impact on the industry and the world we operate in.

Integrity

Guided by Principles, Driven by Purpose

Integrity is the foundation of trust, fostering strong relationships with our partners, clients, and team members.

Dignity

Where Respect Meets Progress

We believe everyone should receive dignified and respectful treatment, nurturing an inclusive and supportive work environment.

Empathy

Building Solutions That Begin with Understanding

Empathy fuels collaboration, enabling us to forge deeper connections and cultivate a workplace characterized by compassion and understanding.

Accountability

Driving Progress, Delivering Results

Accountability ensures the fulfillment of our commitments, with reflections and learnings from challenges faced and driving continuous improvement.

Innovation

Innovating Today for a Better Tomorrow

Innovation fuels our growth, enabling us to pioneer solutions that have a significant impact on the life sciences, healthcare, and pharma industries.

Webinar Speakers

Anna Ivanova

Sr. Bioinformatician & BigData Engineer

The Importance of Scientific Communications

Maria Selifanova

Bioinformatician

From Mechanisms to Systems: Can Biologists Fix the Ratio?

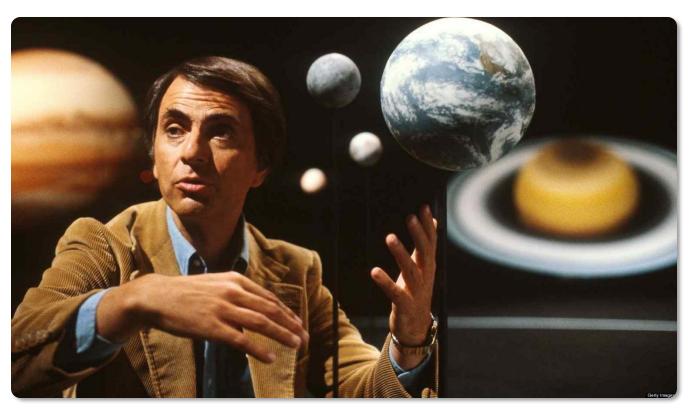
Karina Pats

ML Engineer

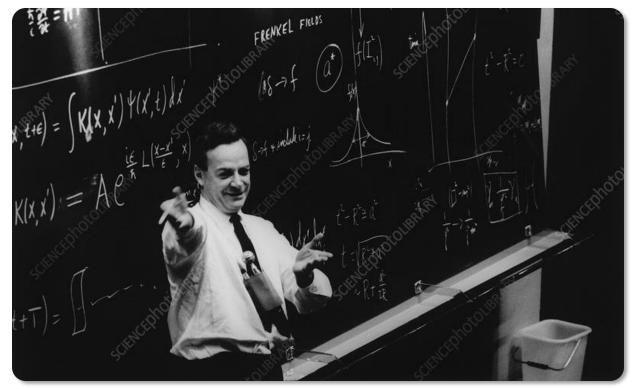
Deep Learning: a Powerful Tool for Solving Mysteries of Life Science

The Importance of Scientific Communications

Background


The Adventures of a Small Yellow Submarine

The "Sagan Effect"

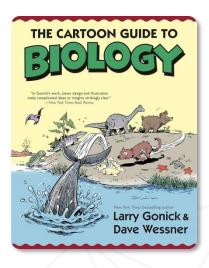


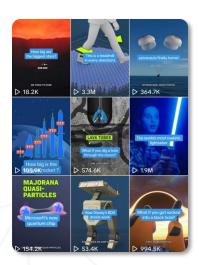
Cosmos: A Personal Voyage • 1980 • 13 episodes

"You can't be a good scientist and a showman at the same time."

Credit CERN / SCIENCE PHOTO LIBRARY

Judged Science Communication Formats

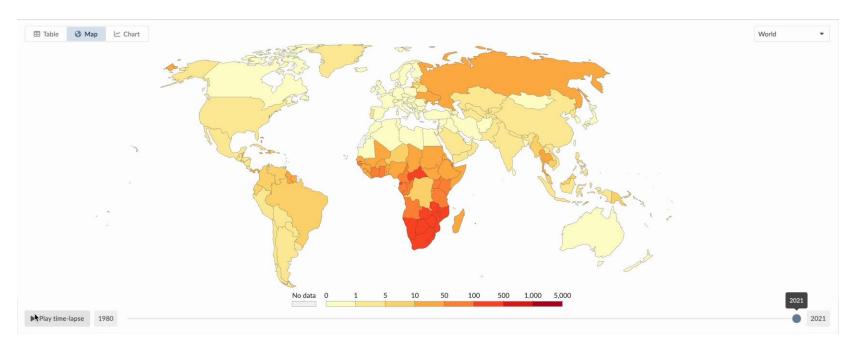



Comics

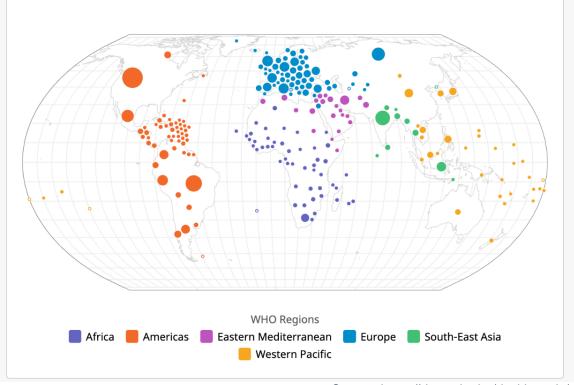
TikToks

Instagram Posts

X (Twitter)



Death Rate from HIV/AIDS


The number of deaths from HIV/AIDS per 100,000 people.

Data source: IHME, Global Burden of Disease (2024)

Number of COVID-19 deaths reported to WHO (cumulative total)

World

7,090,480

+469

increase on previous 7 days

Reported COVID-19 deaths

World, 7 days to 9 March 2025

Number of COVID-19 deaths reported to WHO (cumulative total)

World

Country	Deaths ▼
World	7.1m
United States of America	1.2m
Brazil	702k
	Show 229 more
Saint Helena	0

Source: https://data.who.int/dashboards/covid19/deaths

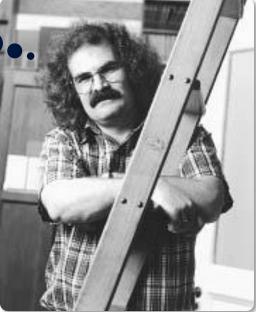
Podcasts Recommendations

This Podcast Will Kill You

Questions

Anna Ivanova

Sr. Bioinformatician & BigData Engineer

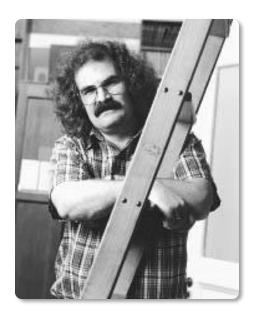

Instagram: Lab.Mouse LinkedIN: Anna Ivanova From Mechanisms to Systems: Can Biologists Fix the Ratio?

David's Model: Cycle of Biological Research

Yuri Lazebnik

David S. Papermaster

David's Model: Cycle of Biological Research

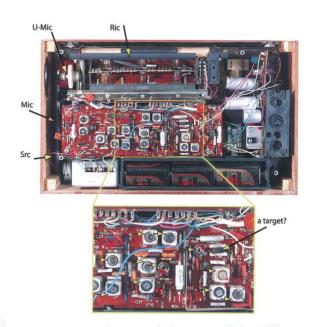


"Can a biologist fix a radio? – Or, what I learned while studying apoptosis"

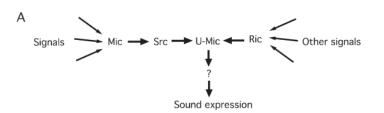
Yuri Lazebnik

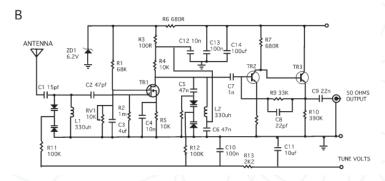
Programmed Cell Death

Broken Transistor Radio


Figure 1. The radio that has been used in this study

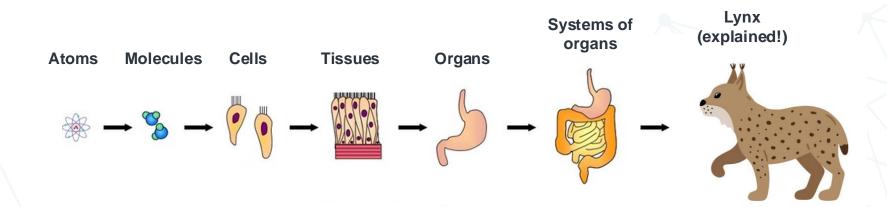
Lazebnik, Yuri. "Can a biologist fix a radio?—Or, what I learned while studying apoptosis." Cancer cell 2.3 (2002): 179-182.


Lazebnik's Thought Experiment



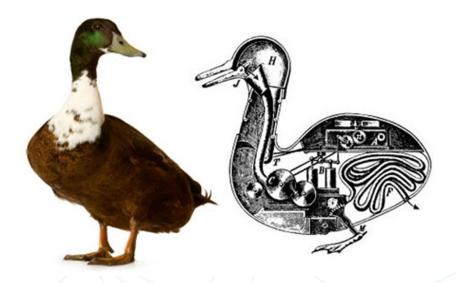
The insides of the radio

Biologists' (A) vs engineers' (B) process schemas



Lazebnik, Yuri. "Can a biologist fix a radio?—Or, what I learned while studying apoptosis." Cancer cell 2.3 (2002): 179-182.

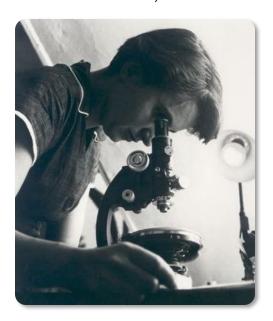
Reductionism


is a methodological perspective that **complex systems can be fully understood by breaking them down into their constituent parts**, studying and analyzing these components in isolation, without necessarily reconciling them back into the whole.

Dupré, John. Processes of life: Essays in the philosophy of biology. Oxford University Press, 2012.

Duck Reductionism

Duck behaviour is the sum of its automatically behaving parts.


Descartes, 1662

Descartes, René. De homine. Vol. 6. Hack, 1969.

Reductionism: Triumph of Molecular Biology

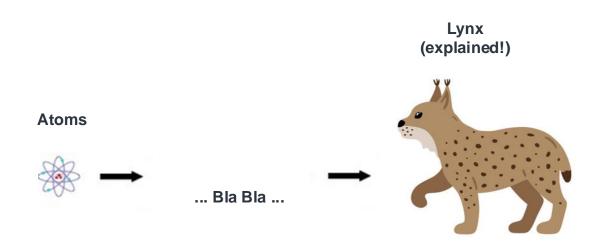
Rosalind Franklin, 1955

James Watson and Francis Crick, 1953

Watson & Crick (1953) proposed the **DNA double-helix model**based on Rosalind
Franklin's X-ray
diffraction data,
showing how base
pairing encodes
genetic information.

Watson, James D., and Francis HC Crick. "The structure of DNA." Cold Spring Harbor symposia on quantitative biology. Vol. 18. Cold Spring Harbor Laboratory Press, 1953.

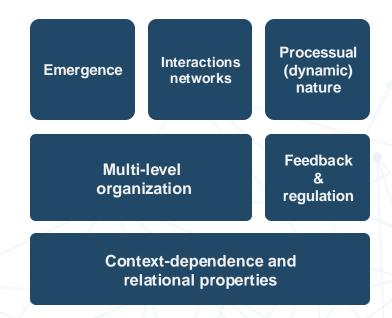
Reductionism: Triumph of Molecular Biology


- 1953 Double helix (Watson & Crick) identified DNA as the hereditary molecule
- 1958 First protein structure (Kendrew & Perutz) revealed 3D link between sequence and function
- 1958 Central Dogma (Crick) defined information flow: DNA → RNA → protein
- 1961 Genetic code (Nirenberg & Matthaei) showed codons specify amino acids
- 1961 Lac operon (Jacob & Monod) demonstrated protein–DNA control of gene expression
- 1961 Cell-free translation (Nirenberg) produced proteins from purified components
- 1972 Recombinant DNA (Cohen & Boyer) enabled gene isolation and cloning
- 1977 DNA sequencing (Sanger) first method to read nucleotide sequences
- 1962 Viral capsid self-assembly (Caspar & Klug) proteins spontaneously form functional shell
- 2003 Human Genome Project delivered the complete human DNA blueprint
- 2012 CRISPR-Cas (Doudna & Charpentier) established precise genome editing tool

... and much more

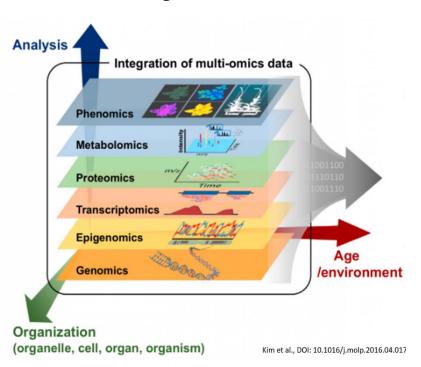
Physicalism

Is an idea that every **biological explanation** could be reduced by **explanations in chemistry and physics.**


Dupré, John. Processes of life: Essays in the philosophy of biology. Oxford University Press, 2012.

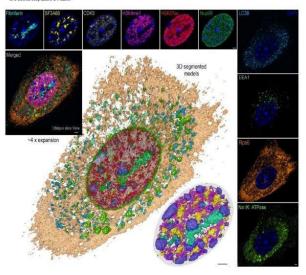
Emergent Properties

 are unexpected properties that arise when combining individual components within a system.

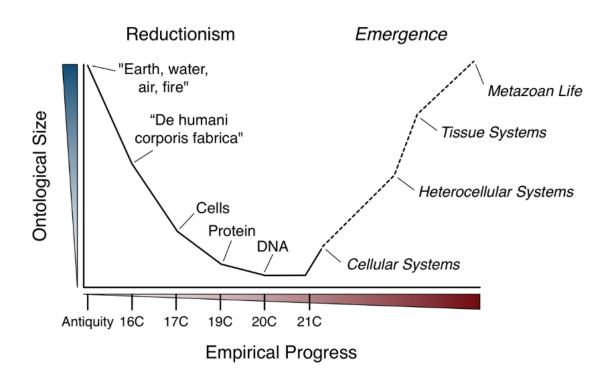


Søren Solkær Black Sun #102 Rome Italy 2022 Archival pigment print on 325gsm Hahnemüle Baryta paper © Søren Solkær

Holistic Approaches: Systems Biology, Multiomics

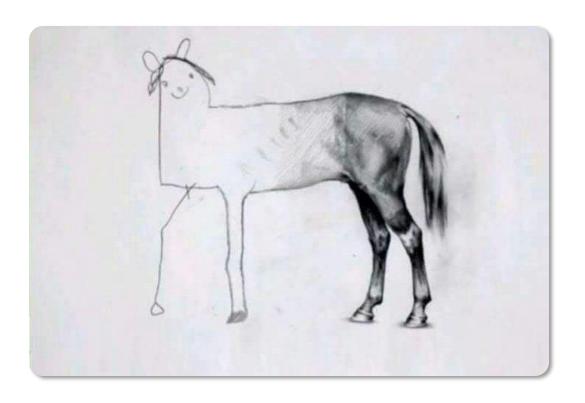

Mutiomics Data Integration

Spatial Mutiomics


Deep-tissue transcriptomics and subcellular imaging at high spatial resolution

Valentina Gandin†, Jun Kim†, Liang-Zhong Yang, Yumin Lian, Takashi Kawase, Amy Hu, Konrad Rokicki, Greg Fleishman, Paul Tillberg, Alejandro Aguilera Castrejon, Carsen Stringer, Stephan Preibisch, Eb. J. Liu*

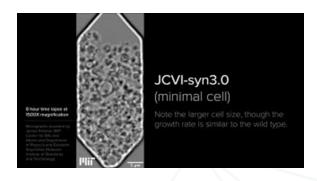
Reductionist Valley



https://tape-lab.com/blog/2016/8/25/escape-from-reductionist-valley

How to Find a Balance?

DNA is the Blueprint of Life ... or Is It?



Reductionist thesis:

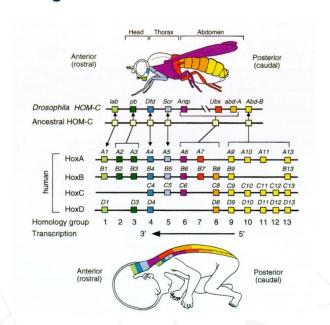
"DNA alone encodes all the information needed to build and run a living system."

Example: In cell-free systems, DNA alone directs protein production, and viral coat proteins can spontaneously assemble into a complete shell.

Fraenkel-Conrat, Heinz, and Robley C. Williams. "Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components." (1955)

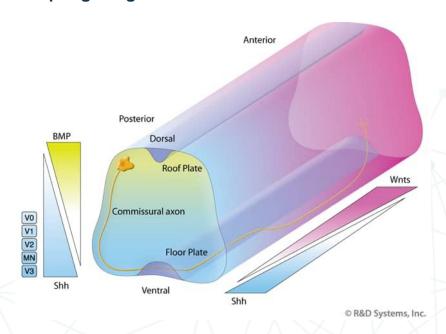
Holistic thesis:

"Hereditary information resides not just in DNA but in the entire genome—cell machinery system."


Example: Even the JCVI syn3.0 minimal genome can't build a cell from DNA alone—it still needs existing ribosomes, membranes, and enzymes.

Hutchison III, Clyde A., et al. "Design and synthesis of a minimal bacterial genome." *Science* 351.6280 (2016): aad6253.

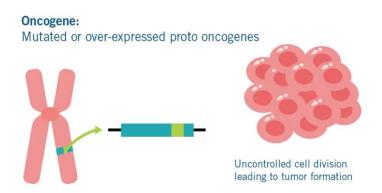
Direction of Causation: Embryonic Development



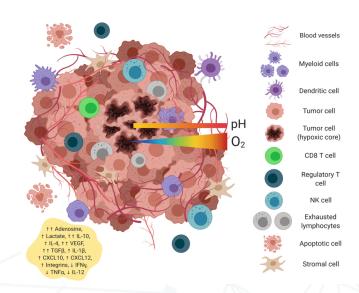
Reductionist, upward causation, Hox genes

Mark, Manuel, Filippo M. Rijli, and Pierre Chambon. "Homeobox genes in embryogenesis and pathogenesis." *Pediatric research* 42.4 (1997)

Holistic, downward causation, morphogens gradient



https://www.rndsystems.com/cn/resources/articles/sonic-hedgehog-morphogen-involved-axon-guidance


Direction of Causation: Cancer Research

Reductionist, upward causation, driver genes

Holistic, downward causation, tumour microenvironment

https://biocare.net/blog/biocare-basics-oncogenes/

Piñeiro Fernández, Julián, et al. "Hepatic tumor microenvironments and effects on NK cell phenotype and function"

The Controversies: BRCA Genes and Breast Cancer

BRCA1 gene

Chromosome 17

17q25.2

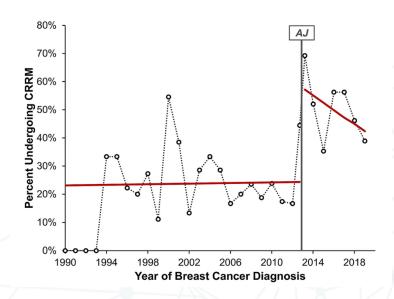
17q24.3

17q24.1

17q23.2

17q21.32

17q21.2


17q12

17p13.2

Angelina Joley effect

Risk-reducing mastectomy trends in patients

Basu, Narendra Nath, et al. "The Angelina Jolie effect: contralateral risk-reducing mastectomy trends in patients at increased risk of breast cancer." *Scientific Reports* 11.1 (2021): 2847.

Conclusions: Complementary Approaches

Reductionist Approach

- Breaks systems into parts for clear, reproducible cause-and-effect insights
- Powers most biological research, databases, and textbook knowledge
- Limitations: overlooks interactions, context-dependent behavior, and emergent properties

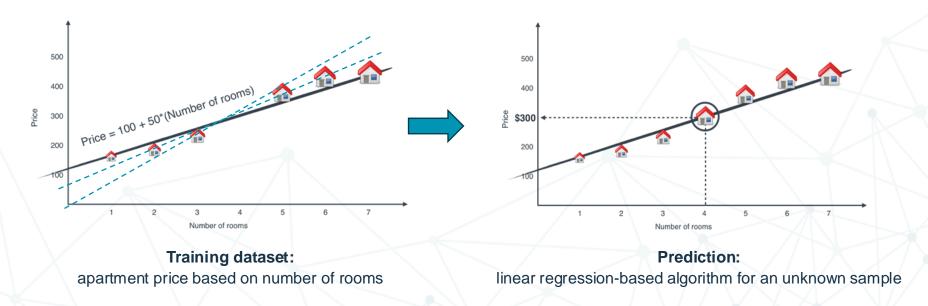
Holistic Approach

- **Examines** whole systems interconnections, emergent phenomena, downward causation.
- Essential for understanding complex behaviors (e.g., cellular networks, ecosystems)
- Limitations: methods are still maturing; findings can be harder to interpret and apply. Influenced by reductionist tradition.

Thank you!

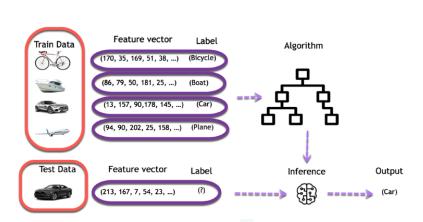
Questions

Maria Selifanova
Bioinformatician

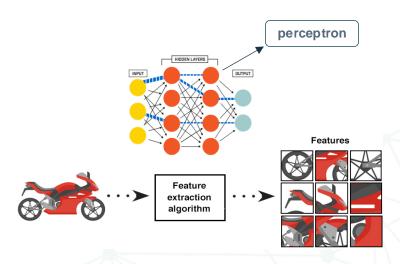

selifanovamariia@gmail.con

Deep Learning: a Powerful Tool for Solving Mysteries of Life Sciences

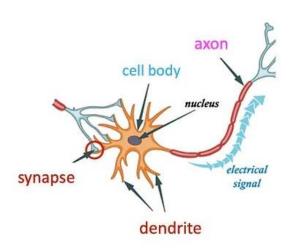
Machine learning (ML): Introduction

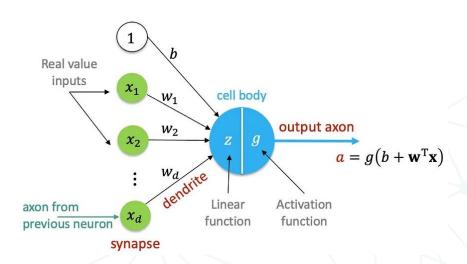


- Input: a set of examples (data) and a task to perform.
- Algorithm figures out how to accomplish the task based on the examples it's given ("learning" component).
- In ML, a machine is not being explicitly programmed to make predictions based on some set of pre-defined rules.

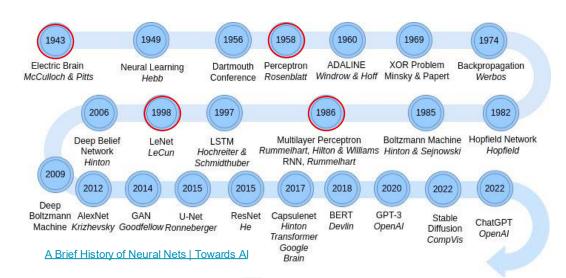


Machine Learning vs. Deep Learning


Machine Learning – statistical algorithms that can learn from data and generalize to unseen data; a feature vector is constructed **manually**

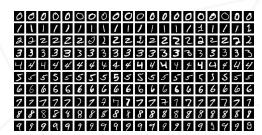

Deep Learning – a subset of machine learning using neural networks, which mimics the **network of neurons** inside a human brain; features are derived **automatically**

A Concept of Neural Network: Perceptron

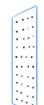

An **artificial neuron** can be thought of as a mathematical model that was influenced by a **biological neuron**

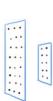
McCulloch-Pitts neuron, a groundbreaking concept introduced by Warren McCulloch and Walter Pitts in 1943 and developed by Frank Rosenblatt into a **Perceptron model in 1958**

Modern Neural Networks



DOG

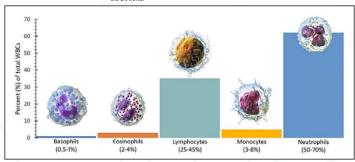

DL applications:


- Automatic translation
- Text and speech recognition
- Traffic prediction
- Online fraud detection
- Image recognition
- Spam filtering

OUTPUT

What is about Life Sciences?

Convolutional Neural Network (CNN): Blood Cells Classification (2024)

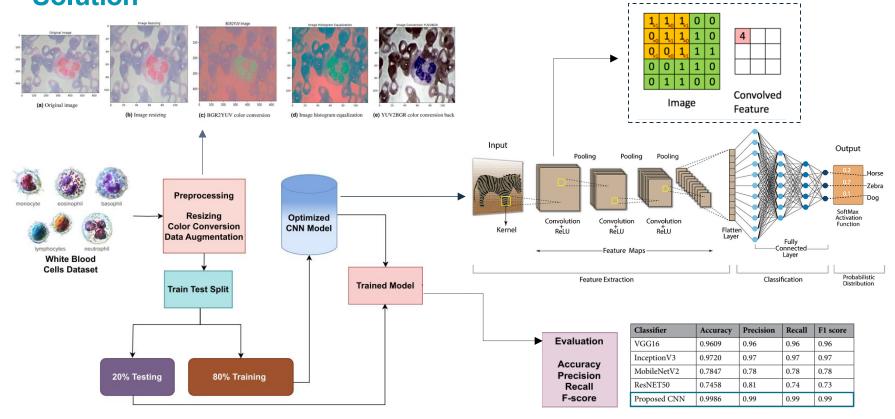

scientific reports

Check for updates

OPEN White blood cells classification using multi-fold pre-processing and optimized CNN model

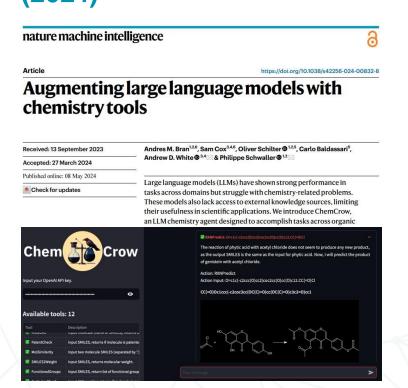
Oumaima Saidani¹, Muhammad Umer², Nazik Alturki¹, Amal Alshardan¹, Muniba Kiran³, Shtwai Alsubai⁴, Tai-Hoon Kim⁵⁰ & Imran Ashraf⁶⁰

White blood cells (WBCs) play a vital role in immune responses against infections and foreign agents. Different WBC types exist, and anomalies within them can indicate disease like levelsmin. Previous research suffers from limited accuracy and inflated performance due to the usage of less important features. Moreover, these studies often focus on fewer WBC types, seaggearting accuracy. This study addresses the crucial task of classifying MBC types using microscopic immose, bright of the control of the contr

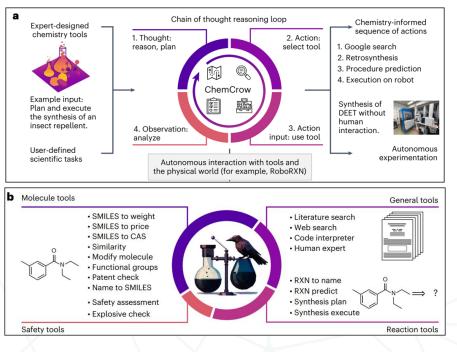

Saidani O. et al. White blood cell classification using multi-fold preprocessing and optimized CNN model. *Scientific Reports*, 14, 3570 (2024)

White blood cells (WBCs) play a vital role in immune responses against infections and foreign agents. Different WBC types exist, and anomalies within them can indicate diseases like leukemia. Previous research suffers from limited accuracy and inflated performance due to the usage of less important features. Moreover, these studies often focus on fewer WBC types, exaggerating accuracy.

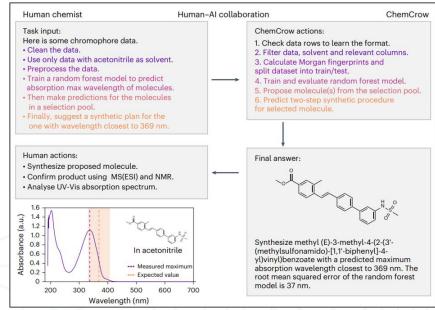
This study addresses the crucial task of classifying WBC types using microscopic images. This study introduces a novel approach using extensive pre-processing with **data augmentation** techniques to produce a more significant feature set to achieve more promising results. The study conducts experiments employing both conventional deep learning and transfer learning models, comparing performance with state-of-the-art machine and deep learning models. Results reveal that a pre-processed feature set and convolutional neural network classifier achieves a significantly better accuracy of 0.99.


Convolutional Neural Network (CNN): Proposed Solution

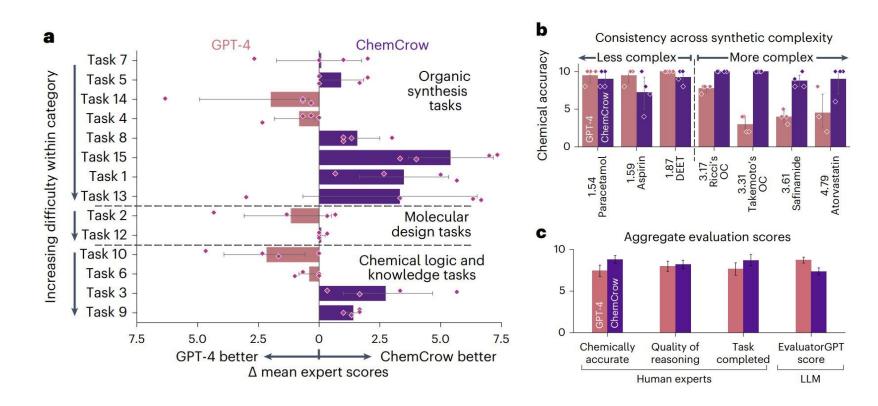
Generative Pretrained Transformer (GPT): ChemCrow (2024)


Bran A. M. et al. Augmenting large language models with chemistry tools. *Nature Machine Intelligence* (2024)

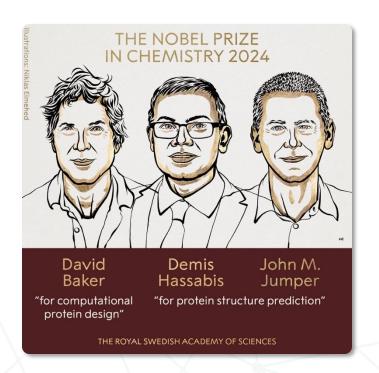
Large language models (LLMs) have shown strong performance in tasks across domains but struggle with chemistry-related problems. These models also lack access to external knowledge sources, limiting their usefulness in scientifc applications.


We introduce ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic synthesis, drug discovery and materials design. By integrating 18 expert-designed tools and using GPT-4 as the LLM, ChemCrow augments the LLM performance in chemistry, and new capabilities emerge. Our agent autonomously planned and executed the syntheses of an insect repellent and three organocatalysts and guided the discovery of a novel chromophore. Our evaluation, including both LLM and expert assessments, demonstrates ChemCrow's effectiveness in automating a diverse set of chemical tasks.

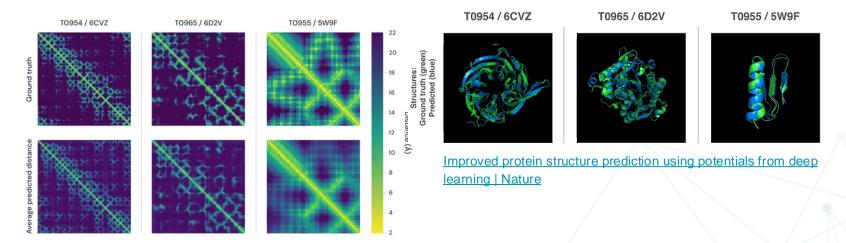
Generative Pretrained Transformer (GPT): Workflow



Human-model interaction leading to the discovery of a new chromophore:


Generative Pretrained Transformer (GPT): Results

AlphaFold 2020-2024

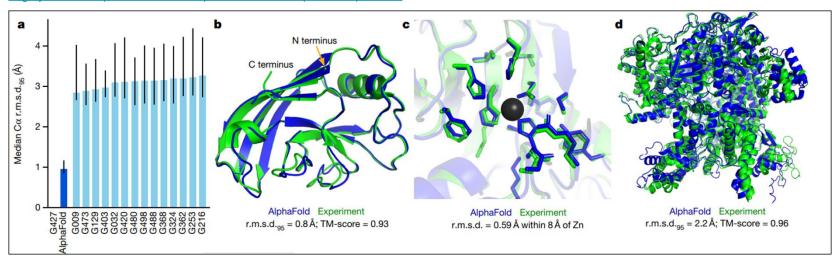

AlphaFold (2020) – CNN-based solution for prediction of the distances between pairs of residues. The resulting potential is optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. Won CASP13 competition.

AlphaFold2 (2021) – first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. Won CASP14 competition.

AlphaFold3 (2024) – diffusion-based architecture, which is capable of joint structure prediction of complexes including proteins, nucleic acids, small molecules, ions, and modified residues. Nobel prize in Chemistry.

AlphaFold2 (2020): Results

Two ways of visualizing the accuracy of AlphaFold's predictions


The left figure features the distance matrices for three proteins. The brightness of each pixel represents the distance between the amino acids in the sequence comprising the protein—the brighter the pixel, the closer the pair. Shown in the top row are the real, experimentally determined distances, and in the bottom row, the average of AlphaFold's predicted distance distributions. Importantly, these match well on both global and local scales.

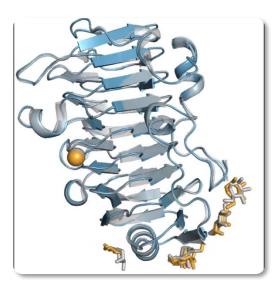
The right panels represent the same comparison using 3D models, featuring AlphaFold's predictions (blue) versus ground-truth data (green) for the same three proteins.

AlphaFold2 (2021): Results

Highly accurate protein structure prediction with AlphaFold | Nature

- a) The performance of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-15 entries (out of 146 entries);
- b) AlphaFold2 prediction of CASP14 target T1049 (PDB 6Y4F, blue) compared with the experimental structure (green).
- c) CASP14 target T1056 (PDB 6YJ1). An example of a well-predicted zinc-binding site (AlphaFold has accurate side chains even though it does not explicitly predict the zinc ion);
- d) CASP target T1044 (PDB 6VR4) a 2,180-residue single chain was predicted with correct domain packing.

AlphaFold3 (2024): Results

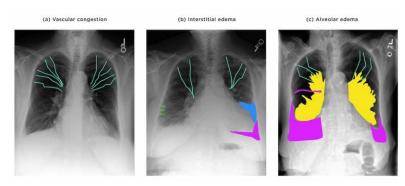

7PNM - Spike protein of a common cold virus (Coronavirus OC43)

AlphaFold3 (2024): Results

8AW3 - RNA modifying protein: AlphaFold 3's prediction for a molecular complex featuring a protein (blue), a strand of RNA (purple), and two ions (yellow) closely matches the true structure (gray). This complex is involved with the creation of other proteins — a cellular process fundamental to life and health.

7BBV - Enzyme: Alpha Fold 3's prediction for a molecular complex featuring an enzyme protein (blue), an ion (yellow sphere) and simple sugars (yellow), along with the true structure (gray). This enzyme is found in a soil-borne fungus (Verticillium dahliae) that damages a wide range of plants.

7R6R - DNA binding protein: AlphaFold 3's prediction for a molecular complex featuring a protein (blue) bound to a double helix of DNA (pink) is a near-perfect match to the true molecular structure discovered through painstaking experiments (gray).


Al at Quantori

From SMILES to Graphs: ML-Driven Cheminformatics

Explainable AI for Medical Image Analysis: Pulmonary Edema Case Study

More Al Articles in Quantori Blog

Questions

Karina Pats
ML Engineer

LinkedIN: Karina Pats

Career Opportunities

- Cheminformatics Engineer
- Bioinformatician / Data Scientist
- Senior Machine Learning Engineer

career.quantori.com

Social Media: Follow Us

Instagram

Facebook

Linkedin

Telegram